Data Science with Python | Agilitics

Login

Register

Login

Register

Buy Courses

DevOps Foundation Certiication
February 26, 2018
Scrum Master Professional
February 28, 2018
Show all

Data Science with Python

$1,200.00 $1,000.00

Description
Lesson 1: Data Science Overview :3 Hours

  • Data Science
  • Data Scientists
  • Examples of Data Science
  • Python for Data Science

Lesson 2: Data Analytics Overview :3 Hours

  • Introduction to Data Visualization
  • Processes in Data Science
  • Data Wrangling, Data Exploration, and Model Selection
  • Exploratory Data Analysis or EDA
  • Data Visualization
  • Plotting
  • Hypothesis Building and Testing

Lesson 3: Statistical Analysis and Business Applications:2 Hours

  • Introduction to Statistics
  • Statistical and Non-Statistical Analysis
  • Some Common Terms Used in Statistics
  • Data Distribution: Central Tendency, Percentiles, Dispersion
  • Histogram
  • Bell Curve
  • Hypothesis Testing
  • Chi-Square Test
  • Correlation Matrix
  • Inferential Statistics

Lesson 4: Python: Environment Setup and Essentials:3 Hours

  • Introduction to Anaconda
  • Installation of Anaconda Python Distribution – For Windows, Mac OS, and Linux
  • Jupyter Notebook Installation
  • Jupyter Notebook Introduction
  • Variable Assignment
  • Basic Data Types: Integer, Float, String, None, and Boolean; Typecasting
  • Creating, accessing, and slicing tuples
  • Creating, accessing, and slicing lists
  • Creating, viewing, accessing, and modifying dicts
  • Creating and using operations on sets
  • Basic Operators: ‘in’, ‘+’, ‘*’
  • Functions
  • Control Flow

Lesson 5: Mathematical Computing with Python (NumPy) :3 Hours

  • NumPy Overview
  • Properties, Purpose, and Types of ndarray
  • Class and Attributes of ndarray Object
  • Basic Operations: Concept and Examples
  • Accessing Array Elements: Indexing, Slicing, Iteration, Indexing with Boolean Arrays
  • Copy and Views
  • Universal Functions (ufunc)
  • Shape Manipulation
  • Broadcasting
  • Linear Algebra

Lesson 6: Scientific computing with Python (Scipy) :2 Hours

  • SciPy and its Characteristics
  • SciPy sub-packages
  • SciPy sub-packages –Integration
  • SciPy sub-packages – Optimize
  • Linear Algebra
  • SciPy sub-packages – Statistics
  • SciPy sub-packages – Weave
  • SciPy sub-packages – I O
Lesson 7: Data Manipulation with Python (Pandas) :2 Hours

  • Introduction to Pandas
  • Data Structures
  • Series
  • DataFrame
  • Missing Values
  • Data Operations
  • Data Standardization
  • Pandas File Read and Write Support
  • SQL Operation

Lesson 8: Machine Learning with Python (Scikit–Learn) :2 Hours

  • Introduction to Machine Learning
  • Machine Learning Approach
  • How Supervised and Unsupervised Learning Models Work
  • Scikit-Learn
  • Supervised Learning Models – Linear Regression
  • Supervised Learning Models: Logistic Regression
  • K Nearest Neighbors (K-NN) Model
  • Unsupervised Learning Models: Clustering
  • Unsupervised Learning Models: Dimensionality Reduction
  • Pipeline
  • Model Persistence
  • Model Evaluation – Metric Functions

Lesson 9: Natural Language Processing with Scikit-Learn:2 Hours

  • NLP Overview
  • NLP Approach for Text Data
  • NLP Environment Setup
  • NLP Sentence analysis
  • NLP Applications
  • Major NLP Libraries
  • Scikit-Learn Approach
  • Scikit – Learn Approach Built – in Modules
  • Scikit – Learn Approach Feature Extraction
  • Bag of Words
  • Extraction Considerations
  • Scikit – Learn Approach Model Training
  • Scikit – Learn Grid Search and Multiple Parameters
  • Pipeline

Lesson 10: Data Visualization in Python using Matplotlib:2 Hours

  • Introduction to Data Visualization
  • Python Libraries
  • Plots
  • Matplotlib Features:
  • Line Properties Plot with (x, y)
  • Controlling Line Patterns and Colors
  • Set Axis, Labels, and Legend Properties
  • Alpha and Annotation
  • Multiple Plots
  • Subplots
  • Types of Plots and Seaborn

Lesson 11: Data Science with Python Web Scraping:2 Hours

  • Web Scraping
  • Common Data/Page Formats on The Web
  • The Parser
  • Importance of Objects
  • Understanding the Tree
  • Searching the Tree
  • Navigating options
  • Modifying the Tree
  • Parsing Only Part of the Document
  • Printing and Formatting
  • Encoding

Lesson 12: Python integration with Hadoop, MapReduce and Spark:2 Hours

  • Need for Integrating Python with Hadoop
  • Big Data Hadoop Architecture
  • MapReduce
  • Cloudera QuickStart VM Set Up
  • Apache Spark
  • Resilient Distributed Systems (RDD)
  • PySpark
  • Spark Tools
  • PySpark Integration with Jupyter Notebook
Reviews (0)

Reviews

There are no reviews yet.

Be the first to review “Data Science with Python”

Your email address will not be published. Required fields are marked *

Request a Call Back
Request For Demo